
 Procedia - Social and Behavioral Sciences 228 (2016) 457 – 461

Available online at www.sciencedirect.com

ScienceDirect

1877-0428 © 2016 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the organizing committee of HEAd´16
doi: 10.1016/j.sbspro.2016.07.070

2nd International Conference on Higher Education Advances, HEAd´16, 21-23 June 2016,
València, Spain

The capabilities of automated functional testing of programming
assignments

Aleksejs Grocevsa*, Natālija Prokofjevab
aRiga Technical University, Meza str 1, Riga, LV-1048, Latvia
bRiga Technical University, Meza str 1, Riga, LV-1048, Latvia

Abstract

In the emerging world of information technologies, a growing number of students is choosing this specialization for their
education. Therefore, the number of homework and laboratory research assignments that should be tested is also growing. The
majority of these tasks is based on the necessity to implement some algorithm as a small program. This article discusses the
possible solutions to the problem of automated testing of programming laboratory research assignments. The course
“Algorithmization and Programming of Solutions” is offered to all the first-year students of The Faculty of Computer Science
and Information Technology (~500 students) in Riga Technical University and it provides the students the basics of the
algorithmization of computing processes and the technology of program design using Java programming language (the given
course and the University will be considered as an example of the implementation of the automated testing). During the course
eight laboratory research assignments are planned, where the student has to develop an algorithm, create a program and submit it
to the education portal of the University. The VBA test program was designed as one of the solutions, the requirements for each
laboratory assignment were determined and the special tests have been created. At some point, however, the VBA offered options
were no longer able to meet the requirements, therefore the activities on identifying the requirements for the automation of the
whole cycle of programming work reception, testing and evaluation have begun.
© 2016 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the organizing committee of HEAd´16.

Keywords: Automation; Assignment; Testing; Continuous Integration;

* Corresponding author. Tel.: +371-268-036-26; fax: +371-670-895-71.

E-mail address: aleksejs@grocevs.pro

© 2016 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the organizing committee of HEAd´16

http://crossmark.crossref.org/dialog/?doi=10.1016/j.sbspro.2016.07.070&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sbspro.2016.07.070&domain=pdf

458 Aleksejs Grocevs and Natālija Prokofjeva / Procedia - Social and Behavioral Sciences 228 (2016) 457 – 461

1. Introduction

The current development of information technologies sets the overall trend of choosing the specialization field for
future IT-specialists; as well as the number of applications for IT studies is growing every year. The training
programs are also keeping up with trends - if previously Pascal and C were used to explain the examples and the
basic elements of programming, now the basics of programming are taught using Python, Java and other top level
programming languages. Most of the homework and laboratory research assignments for the courses related to
software development, discrete mathematics, algorithmization, artificial intelligence, and many others are used to
check the students' mastery level: there are assignments that evolve algorithm implementation in a shape of a small
program where the input value(-s) are given and the transformation of these values according to some algorithm is
expected as an output. In addition to achieving its main goal the source code of the program is also checked for
common mistakes, as well as it is verified for the proper implementation of the task, writing style etc. Therefore, the
need to automate the processing of routine tests (if not the checking of the source code itself then at least the testing
of the correct input/output data processing) appears. Although some aspects of automation have already been under
study, the complete solution of this problem has never been developed completely. In order to do this, it is necessary
to consider how rational implementing automation will be and what metrics can be used to describe it, as well as to
find out the tools that can aid in increasing its level of compliance with the criteria mentioned above.

2. Choosing the Metrics and Evaluating Implementation Possibilities

In order to get a grade, the student has to implement the required algorithm as a program, submit the program in a
binary (compiled) form as well as providing its source code. The professor has to test both the program using a
subset of pre-calculated input/output data pairs, and its source code equivalence to the binary representation,
including the compilation ability and the absence of errors while executing it. It is imperative to evaluate the factors
affecting the whole process and to choose the metrics for intercomparison.

2.1. Identified Metrics

Algorithm implementation validation speed is criteria that reflects how fast can the professor obtain the program
and its source code, execute and test it using the predefined test patterns. In the University the student has to upload
the result of his work to the "Homework" section of the Moodle education portal, where the professor should run
and evaluate it after downloading.

Evaluation quality – even in case of simple tasks, such as "implementing a list sorting algorithm" there might be
many border cases which can lead to incorrect execution results, but sometimes may not be checked due to time
limitation. When using the automated testing solutions, it is possible to pre-create the large number of different tests
that check all the aspects of the performance of the given assessment.

Report preparation – it is important to put the data of successful/unsuccessful test runs together and to inform the
student of the result. When using on-line solutions there is a possibility to send a test-passed-successfully
notification as soon as an assessment has been uploaded and tested. It is also important to record the summary of all
students’ assessments in form of a table that can later be used to be uploaded to the University education portal.

Plagiarism check – even if the tasks are relatively similar it is crucial to make sure the source code was written by
the student himself and not plagiarized from a colleague. This check should be made once by a professor in order to
avoid the code consecutive altering so it can successfully pass the check.

Safety check – the binary representation of the program and its source code are usually tested separately in order
to save time, and this is most commonly done in that particular order. Although, it is not always possible to quickly
detect the malicious code, which is meant to erase or alter the test results or even the testing system itself, when the
solution consists of several files or modules. Therefore, while testing the compiled programs they should be treated
as potential malware or viruses that may damage the test environment. Ideally they should be executed in the
sandbox environment which ensures the isolation of the potential threat.

Bug fix tracking – if the code has been partially altered (either on the professor's request or during the debugging
process) the modified parts of the file are indistinguishable from the previous code in the file. Therefore, the

459 Aleksejs Grocevs and Natālija Prokofjeva / Procedia - Social and Behavioral Sciences 228 (2016) 457 – 461

professor has to manually compare two versions of the file in order to detect these changes, or even look through the
entire source code file. This problem can be solved by using version control system (VCS). The Moodle system
itself does not provide neither an option nor plugin for that, so this possibility can only be considered in the context
of implementing it in on-site solution.

2.2. Automated Testing Implementation Possibilities

At the moment all of the assessment checking, test executing and running as well as plagiarism check/percentage
evaluation is done manually. It is obvious that an ordinary human cannot keep the source code of five hundred
similar programs in mind, nor is he able to measure their similarity. That is why similar researches exist that also
suggest automated testing implementation (Pozenel, Furst and Mahnicc, 2015, Hansen, D. M., 2013)

In order to aid the manual testing the academic department of the University has developed a VBA script that
automatically executes and checks the assessments for a compiled program; the test results are recorded in an Excel
file. This improvement has allowed to speed up the evaluation process making it possible for the professor to focus
more on the source code, which is a more important than an actual test run.

Some authors (Cheng, Z., Monahan, R., & Mooney, A., 2011, Thiébaut, D., 2015) are offering to use the
automated verification of test runs and a plagiarism check as a separate Moodle module, which implements many
previously defined criteria at the time the assessment is uploaded to Moodle. However, none of these researches
provide the complete solution to this problem.

In addition to the above mentioned methods it is also possible to use the features of the Continuous Integration
technology that was made specifically to constantly check the software. This would allow the students to upload
their works into an automated testing environment that would immediately check these assessments based on the
tests prepared by a professor and would provide the near-realtime response, whether the program has passed the
tests or not. In addition to the functional check this service could also evaluate the source code for potentially
harmful behavior or actions in an isolated sandbox-environment.

3. Comparison of Possible Implementations

By identifying the possible solutions and considering the current approach to the testing it is possible to compare
these approaches using the previously proposed metrics.

3.1. Manual Testing

The speed and the quality of manual check of each assessment will be definitely lower compared with the
automated check. The numerical representation of absolute comparison results is impossible in that case due to
average human concentration and performance abilities of each individual.

Report preparation is done manually, therefore both the error rate and the time consumed will be considerably
higher when compared to an automated check.

Plagiarism check in general will be less accurate with a large amount of assessments, however human perception
makes detecting such cases reflexively or by using additional environment information possible (the plagiarism rate
is higher if the students are friends). Furthermore, biased perception and evaluation of the work are also possible due
to the human factor.

Safety check depends on the set of rules enforced by the University. These rules define how to verify the
programming assessments and how to run the executable files. It is most likely that a professor will primarily check
the compiled program in order to return it for correction in case of a program failing the tests. This saves him the
time for compiling the program from its source code.

460 Aleksejs Grocevs and Natālija Prokofjeva / Procedia - Social and Behavioral Sciences 228 (2016) 457 – 461

3.2. Using of the VBA Script

The speed and the quality of such checks are increased in comparison with manual checks. Since the VBA
implementation allows to check just one assessment at a time, it cannot be considered as a finished testing
automation, as the required programming work has yet to be copied to the proper folder for a script check.

Report preparation is consistent with the expectations and the requirements – the results of automated test are
recorded in Excel file for each student.

The plagiarism and safety checks remain at the same level as in case of manual check, since the VBA script can
only work with the compiled program.

3.3. Using of the Moodle Plug-ins

According to the authors, the speed and the quality of such checks are high and take place in real time.
The preparation of report is made using Moodle so this solution is also consistent with the requirements.
The plagiarism check is present in some announced solutions but it is not fully functional (system improvement

work is still in progress).
Safety check remains poor since the sandbox-environment is not used, which increases the risk of compromising

the whole Moodle system (since all tests are executed under the Moodle user privileges).

3.4. Creating On-Site Solution

While creating an on-site solution using the third-party developer tools, it is possible to meet all the
abovementioned needs. We propose to use Gogs as a Git-repository – the storage for the source code of all
programming assessments; Jenkins as a Continuous Integration server; Docker as a sandbox-environment and
Apache Solr or other full-text search system as a plagiarism checker. Many authors (Cosma, G., & Joy, M., 2012,
Pozenel, Furst and Mahnicc, 2015, Zhang, D. et al, 2015) have approached the problem of detecting the plagiarism
in the source code, and some authors (Kikuchi H. et al, 2015) are proposing the solutions that are consistent with the
University requirements and can be integrated into the suggested infrastructure. Our suggested infrastructure
involves the following workflow:

1. The students codes the task in the program code and uploads/updates it using Git;
2. Jenkins checks all the students' repositories once per minute, sends a plagiarism check request to Sorl whenever a

new commit appears, creates a separate sandbox-environment, compiles a program within it and runs the tests. If
the tests are passed – Moodle API is used to mark the student’s assessment as successfully completed and to
upload the source code his behalf. If the tests are not passed or the harmful code was found – the student is
notified by an e-mail and has to go back to step one. The Docker sandbox container is being automatically
removed either when the tests are completed or by timeout.

3. After the assessment submission deadline, the professor sets all Git-repositories to read-only mode, runs a
Jenkins-plugin, which sends a plagiarism check request for each of the assessments to Solr and records the
additional data on plagiarism score for every task’s source code to Moodle.

4. The only action left for the professor is to check the source codes or to compare the latest source code version
with the previous using the built-in Gogs tools.

Such an approach provides the level of checking speed and quality as well as a report preparation level similar to
that of the Moodle plugin.

It is possible to use outer systems for plagiarism checks since Jenkins API allows to connect the various external
services.

Safety check is at a high level due to the isolated container (sandbox) use, so the risk of system infestation by the
malicious code and other destructive actions is minimized.

Tracking of error correction is a standard feature of the Gogs-repository which facilitates the comparison of file
versions and change-tracking.

461 Aleksejs Grocevs and Natālija Prokofjeva / Procedia - Social and Behavioral Sciences 228 (2016) 457 – 461

4. Conclusion and Future Work

Based on the comparison results of the programming work automated testing capabilities using the VBA script,
Moodle plugins and on-site solution, we can assert that the initial implementations in that area already exist; many
authors are highlighting this fact. However, there is no general method which could improve the education quality
by simplifying the verification process and shifting the assessor's professional skill focus from routine tasks towards
the student's skills check in implementing the required task and understanding of the material. Our suggested
approach to the programming assessment storage organization, testing and verification allows to solve the
abovementioned problems and improve the professor's working efficiency.

Hereafter we are planning to investigate the integration with anti-plagiarism systems and the available
implementations in this area in details, as well as to create an on-site solution for integrating it into the educative
process.

References

Hansen, D. M. (2013). Paperless subjective programming assignment assessment: a first step. Journal of Computing Sciences in Colleges, 29(1),
116-122.

Cheng, Z., Monahan, R., & Mooney, A. (2011). nExaminer: A semi-automated computer programming assignment assessment framework for
Moodle.

Thiébaut, D. (2015). Automatic evaluation of computer programs using Moodle's virtual programming lab (VPL) plug-in. Journal of Computing
Sciences in Colleges, 30(6), 145-151.

Cosma, G., & Joy, M. (2012). An approach to source-code plagiarism detection and investigation using latent semantic analysis. Computers,
IEEE Transactions on, 61(3), 379-394.

Pozenel, M., Furst, L., & Mahnicc, V. (2015, May). Introduction of the automated assessment of homework assignments in a university-level
programming course. In Information and Communication Technology, Electronics and Microelectronics (MIPRO), 2015 38th International
Convention on (pp. 761-766). IEEE.

Zhang, D., Joy, M., Cosma, G., Boyatt, R., Sinclair, J., & Yau, J. (2014). Source-code plagiarism in universities: a comparative study of student
perspectives in China and the UK. Assessment & Evaluation in Higher Education, 39(6), 743-758.

Kikuchi, H., Goto, T., Wakatsuki, M., & Nishino, T. (2015). A Source Code Plagiarism Detecting Method Using Sequence Alignment with
Abstract Syntax Tree Elements. International Journal of Software Innovation (IJSI), 3(3), 41-56.

