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Abstract 

Thanks to the advances in digital educational technology, online learning (or 

e-learning) environments such as Massive Open Online Course (MOOC) have 

been rapidly growing. In the online educational systems, however, there are 

two inherent challenges in predicting the performance of students and 

providing personalized supports to them: sparse data and the cold-start 

problem. To overcome such challenges, this article aims to employ a pertinent 

machine learning algorithm, the Bayesian Probabilistic Matrix Factorization 

(BPMF) that can enhance the prediction by incorporating background 

information on the side of students and/or items. An experimental study with 

two prediction scenarios and 24 experimental conditions was conducted to 

study the BPMF based on real online learning data. The results show that the 

lower rate of missingness and the appropriate dimensionality of latent features 

provided better prediction accuracy in both prediction scenarios. The use of 

side information enhanced the prediction accuracy but the effect was 

diminished for the high dimensional latent features when the data are sparse. 

The methodological value, applicability, and practical implications of the 

BPMF and side information to the online educational systems were also 

discussed.  
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1. Introduction 

Digital educational technology has advanced considerably over the last few decades. Thanks 

to the advances, particularly, online learning (or e-learning) environments such as Massive 

Open Online Course (MOOC) have been rapidly growing and getting attention. Such online 

educational systems have promising advantages in helping students access more easily to the 

qualified instructions and resources as well as in allowing them to manage their learning 

process flexibly (Zhang & Chang, 2015). Moreover, students would have more benefits from 

the adaptive assessment tailored to the behaviors and needs of individual students in the 

online learning environments. In the online educational systems, however, there are two 

inherent challenges in predicting the future performance of students and providing 

personalized supports to them: sparse data and the cold-start problem. First, as widely known 

in general online recommender systems, student-item interaction data are often inevitably 

sparse (in this context, sparse means that many elements of the data matrix are empty); there 

is a considerable number of students who respond to only a certain subset of all possible 

items in the online systems. Second, the online educational systems suffer from an inability 

to recommend and/or provide appropriate items for new students who have started the online 

assessment for the first time. The systems are often incapable of correctly matching the new 

students with the incipient items due to the lack of background information for each student, 

which results in inaccuracy of item recommendations (and hence a lot of dropout) at the 

beginning of online learning, which is called the ‘cold-start’ problem (Bobadilla et al., 2012). 

To overcome such challenges, a pertinent machine learning algorithm for the online 

educational systems, the Bayesian Probabilistic Matrix Factorization (BPMF; Salakhutdinov 

& Mnih, 2008), can be employed. By incorporating background information on the side of 

students and/or items, it enhances the student performance prediction. This article aims to 

examine the methodological value, applicability, and practical implications of the BPMF and 

side information to the real online learning data, so that it would help facilitate a personalized 

learning for students, develop adaptive assessment, instructional strategies, and course 

curriculum for teachers and developers. An experimental study is conducted to apply the 

BPMF to the logging data of an online learning environment, Statistics Online. The 

experiment is designed to study the prediction in two challenging scenarios encountered in 

online educational systems: (a) existing students take only a part of the all items (some 

student-item interaction data are sparse), and (b) the data are entirely missing for new 

students who do not take any items yet. Given the two prediction scenarios, several 

experimental conditions on the rate of data missingness to be filled and the dimensionality of 

latent features to be used in the BPMF are considered. Then, background information 

variables on the student and/or item sides of the Statistics Online data are incorporated into 

the BPMF to see if either or both of them enhance the accuracy of predicting students’ 

performance in both prediction scenarios.  
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2. Algorithm of Bayesian Probabilistic Matrix Factorization 

The BPMF is an advanced version of matrix factorization that uses a collaborative filtering 

approach in machine learning algorithms (Salakhutdinov & Mnih, 2008). Compared to the 

previous matrix factorization methods, the BPMF can use additional information for students 

and/or items when making predictions on the two latent feature vectors, and hence it can 

implement more accurate factorization, resulting in better predictions especially for the 

entities that have few or no observations. Its prediction process is formulated in mathematical 

terms as follows. Let 𝑌 denote a response data matrix and 𝑌𝑖𝑗  is the binary response value (0 

= incorrect response; 1 = correct response) of student 𝑖 on item 𝑗; 𝑈 denotes a D-dimensional 

latent feature matrix for students and 𝑈𝑖 is the 𝑖-th student-specific vector in 𝑈; 𝑉 denotes a 

D-dimensional latent feature matrix for items and 𝑉𝑗  is the 𝑗-th item-specific vector in 𝑉. 

Note that D-dimension represents a size of the latent feature vectors, 𝑈𝑖 and 𝑉𝑗. In this setup, 

an optimization algorithm enables to predict the incomplete entries in the observed 𝑌, which 

minimizes the sum of the squared differences between 𝑌𝑖𝑗  and 𝑈𝑖
𝑇𝑉𝑗, the dot product of 𝑖-th 

row in 𝑈 and the 𝑗-th column in 𝑉. Specifically, the following optimization problem is solved 

in terms of a loss function 𝐿 of 𝑈 and 𝑉:                      

𝐿(𝑈, 𝑉) = ∑ (𝑌𝑖𝑗 − 𝑈𝑖
𝑇𝑉𝑗)2

(𝑖,𝑗)∈𝐼𝑌
+  𝜆𝑈‖𝑈‖𝐹

2   +  𝜆𝑉‖𝑉‖𝐹
2  ,                       (1)  

where 𝐼𝑌 is the set of observed entries in 𝑌 and ‖ . ‖𝐹 represents the Frobenius norm, which 

is the square root of the sum of the absolute squares of the elements in the matrix. 

Regularization parameters, 𝜆𝑈 > 0 and 𝜆𝑉 > 0, are derived from Gaussian priors on the 𝑈𝑖 

and 𝑉𝑗 and a Gaussian noise model on the observed 𝑌𝑖𝑗 . 
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Figure 1. Model parameters and hyperparameters for the BPMF.  

For the model parameters used in the BPMF (see Figure 1), each latent feature vector is 

assumed to follow a multivariate normal distribution. That is, 𝑈𝑖  ~ 𝑀𝑉𝑁(𝜇𝑈 + 𝛽𝑈 𝑋𝑖
𝑈, 𝛬𝑈), 

where 𝜇𝑈 is a vector of prior means for 𝑈𝑖, 𝛬𝑈 is a variance covariance matrix for 𝑈𝑖 and  𝛽𝑈  

is a vector of weights for the 𝑖 -th student’s background variable 𝑋𝑖
𝑈 . Similarly, 

𝑉𝑗  ~ 𝑀𝑉𝑁(𝜇𝑉 + 𝛽𝑉 𝑋𝑗
𝑉 , 𝛬𝑉), where 𝜇𝑉 is a vector of prior means for 𝑉𝑗, 𝛬𝑉 is a variance 

covariance matrix for 𝑉𝑗 , and  𝛽𝑉  is a vector of weights for the 𝑗-th item’s background 

variable 𝑋𝑗
𝑉. Particularly, model parameters and hyperparameters are integrated out using 

Markov chain Monte Carlo methods, which enables to control the model complexity 

automatically based on the training data. Based on the discovered latent feature matrices, the 

missing entries are predicted on a probability scale between 0 and 1 by computing the dot 

products of the two latent feature vectors of the corresponding rows and columns, 𝑈𝑖 and 𝑉𝑗, 

respectively.  
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Figure 2. Illustration of the prediction scenarios.  

3. Design and Evaluation 

3.1. Prediction Scenarios 

To consider the practical challenges in the online learning environments, two prediction 

scenarios for the BPMF are taken into account in an experiment as follows:  

(a) Scenario 1 (sparse data); existing students have sparse response data because they take 

only a part of the all items,  

(b) Scenario 2 (cold-start problem); new students have no response data because they did not 

take any items yet. 

Figure 2 illustrates the two prediction scenarios in which the BPMF is implemented. For the 

first scenario, missing entries (indicated with a question mark) in the sparse data matrix Y for 

existing students will be predicted. For the second scenario, missing entries in the unobserved 

data matrix 𝑌(𝑡) for new students will be predicted, whereas background information 𝑋𝑖(𝑡)
𝑈  on 

the new student 𝑖 may be available. 
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3.2. Experimental Conditions  

To investigate the best working conditions of the BPMF for each of the two prediction 

scenarios, and to study whether the use of student and/or item information variables can 

enhance the prediction accuracy, several experimental conditions are considered: 

(1) the rate of data missingness to be filled is varied by 10% or 50%, 

(2) the dimensionality of latent features to be used is varied by 1, 5, 10, or 20 dimensions, 

(3) none, only student information variables, or both student and item information variables 

are incorporated into the BPMF.  

In total, 2 x 4 x 3 = 24 experimental conditions are considered in each prediction scenario. 

3.3. Evaluation Method  

For each data set, the prediction performance of the BPMF is evaluated by a 10-fold cross 

validation (CV). Note that k-fold CV means that the benchmark dataset is randomly selected 

by k subsets of equal size. Then, one of the k subsets is defined as a “test” subset for the 

evaluation of the predictions. The remaining k-1 subsets are used for “training” the model. 

This procedure is repeated by k times, each time a different subset is used as the test subset. 

Each subset (fold) is used only once as a test subset. In the end, the final result is calculated 

by the average of the k different results obtained from the k-fold CVs. To evaluate the 

accuracy of the predictions made by our system, we employed Receiver Operating 

Characteristic (ROC) curves and Area under the Receiver Operating Characteristic 

(AUROC). Note that a ROC curve represents the relation between true positive rates (true 

positive/(true positive+false nagative)) and false positive rates (false positive/(false 

positive+true negative)) at various thresholds. A precision recall curve is defined as the 

precision (true positive/(true positive+false positive)) against the recall (true positive/(true 

positive+ false negative)) at various thresholds. The true positive rate is the same as recall, 

and is also denoted as sensitivity, while the false positive rate is also denoted as (1-

specificity). In case of totally random predictions the AUROC is approximately equal to 0.5 

and Area Under the Precision–Recall (AUPR) is equal to the frequency of the positive class.  

4. An Experimental Study 

4.1. Data  

The data set contains item responses of 2,044 students at KU Leuven (University of Leuven), 

Belgium to a total of 20 assessment items in the university’s online course for regression 

analysis. The observed responses are all dichotomous indicating whether the student has 

answered the item correctly (= 1) or not (= 0). In addition to the student-item responses, there 
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are various side information about students and item themselves. Specifically, there are 23 

student-side information variables that describe students’ background (e.g., the status of 

dyslexia, dyscalculia, AD(H)D, ASS, another language problem, school type, resident area, 

and so on) and 6 item-side information variables for the items’ properties (e.g., question type, 

attainment target, and so on). Although the initial response data and side information 

variables do not have any missing observations, they are adjusted based on the experimental 

conditions we considered for the purpose of an experimental study. 

4.2. Analysis  

For data analysis, ‘Macau’ (Simm et al., 2015), a Python package that provides wrapper 

functions for the BPMF was used. The MCMC sampling with 100,000 iterations (first half 

as a burn-in) was used to factorize a student-item matrix. The final estimates of the model 

parameters were obtained by taking the mean of the posterior samples after the burn-in 

periods of 50,000 iterations. 

4.3. Results  

 

Figure 3. AUROC plots showing the effects of missingness rate and latent feature dimensionality in the BPMF. 

As can be seen in the AUROC plots (see Figure 3), the results show that AUROC was greater 

in dataset with 10% missing values compared to the one with 50% missing values in both 

prediction scenarios, regardless of the number of latent feature dimensions. In both prediction 

scenarios, the prediction accuracy increased dramatically between 1 and 5 dimensional latent 

features, but afterward any changes look very minor even with a higher number of latent 

feature dimensions. The BPMF with 10 and 20 dimensions may overfit the current dataset.  
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Figure 4. ROC curves showing the effect of using side information variables in the BPMF.  

Figure 4 visualizes the relations between true positive rate and false positive rate using ROC 

curves. The top two panels show the results of Scenario 1 when predicting the existing 

student’s performance on the unsolved items; it is found that compared to the BPMF without 

using any side information, using side information provided better prediction accuracy (top 

left). But the effect of using the side information was diminished when 10 dimensional latent 

features were used (top right). On the other hand, the bottom two panels show the results of 

Scenario 2 when predicting the new student’s performance on the existing items; it is found 

that using side information provided better prediction accuracy for both 1 and 10 dimensional 

latent features. Additionally, there was almost no gain by adding item-side information on 

top of student-side information in both prediction scenarios. 

5. Conclusion and Discussion  

An experimental study to predict student performance using the BPMF was designed with 

the two prediction scenarios (Scenario 1 for the sparse data, Scenario 2 for the cold-start 

problem) and 24 experimental conditions. The Statistics Online data were adjusted and used 

for the experimental study to consider the reality in the online learning environments. The 
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results show that the lower rate of missingness (10%) and the appropriate dimensionality of 

latent features (5 dimensions) provided better prediction accuracy in both prediction 

scenarios. The use of student and/or item side information variables in the BPMF enhanced 

the prediction accuracy; the effect was diminished for the high dimensional latent features 

(10 dimensions) in Scenario 1 but it was kept for both of the low and high dimensional latent 

features in Scenario 2. Thus, considering the two challenging scenarios, this study helps us 

find optimal conditions on the use of the BPMF to predict student performance more 

accurately, which has a predictive value in a methodological perspective.  

Moreover, this study sheds light on the applicability and practical implications of the BPMF 

and side information to the online educational systems. It can help tearchers and developers 

forecast individual or grouped students’ performance on the online course, which allows 

them to develop and improve personalized or grouped instructional strategies, course 

curriculum, adaptive assessment, and  other elements of the online educational systems. It 

can also help facilitate a personalized learning for the existing students as well as provide a 

suitable recommendation of the items and courses for the new students.  

Lastly, more extensive simulations are desired for future studies to identify the effects of 

latent feature dimensions where different ratios of the number of students and items are given 

and the strength of relation between latent features and side information. 
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