

Style features in the programming process which can help
indicate plagiarism

Heidi Meier, Marina Lepp
Institute of Computer Science, University of Tartu, Estonia.

Abstract
In the new situation, where more and more final programming assignments
are performed outside the classroom, it is necessary to pay more attention to
the possibilities of understanding whether a student has created the solution
on their own. To do this, it is possible to use a programming environment that
logs user actions. One such environment is Thonny, which also allows the
programming process to be replayed. The aim of this study is to identify style
features of different learners, based on solution logs of introductory
programming courses, and to explore how permanent these features are and
can these indicate whether learners have solved the tasks without external
aids. It can be said that non-programming style features, like the order of
writing brackets or quotation marks, are more permanent and can be used to
detect plagiarism. However, programming style features, such as the use of
variable names or increment, are very variable between courses, and students
participating in introductory courses do not have an established style. They
are greatly influenced by the style features of teaching materials and solutions
of sample tasks. Therefore, programming style features cannot be used to
automatically check if a student has solved a task on their own.

Keywords: Style features; programming process; plagiarism; higher
education.

7th International Conference on Higher Education Advances (HEAd’21)
Universitat Politècnica de València, València, 2021

DOI: http://dx.doi.org/10.4995/HEAd21.2021.13072

This work is licensed under a Creative Commons License CC BY-NC-ND 4.0
Editorial Universitat Politècnica de València 623

Style features in the programming process which can help indicate plagiarism

1. Introduction

As time goes on, programming becomes more popular, and people increasingly learn it at
universities. During the learning process, students solve many programming tasks. Knowing
various aspects of the programming process is helpful for understanding how different
students study. In the new situation, with the increasing share of e-learning, it is increasingly
the case that even final assignments are performed outside the classroom. More attention
needs to be paid to the ways of understanding whether programs have been created by
students themselves. It is possible to use different recording tools. One option is to use a
programming environment which logs user actions and use the ability to examine logs. One
such environment is Thonny, a Python programming environment designed for learning and
teaching programming, and it has logging functionality. The logs contain information about
user actions during the solution process, and the programming process can be replayed
(Annamaa, 2015). Because of logging details, it is also possible to identify from the log the
order in which characters were written.

In our study, we analysed Thonny logs collected from the courses “Introduction to
Programming” and “Introduction to Programming II” which took place at the University of
Tartu in the spring of 2020. The study is qualitative and looks at style features that can be
distinguished based on the programming process. The focus is also on the persistence of style
features because permanent ones can be used in detecting plagiarism. The detected style
features can later be used in quantitative research. The article is based on the following
research questions. 1) What style features of different learners in solving programming tasks
can be identified based on task solution logs of introductory courses? 2) What style features
are permanent and can indicate whether a learner has solved the tasks on their own?

2. Literature Review

The similarity between programs has been studied to a great extent. A number of tools has
been created, and some of them are also based on programming style. For example,
Arabyarmohamady, Moradi and Asadpour (2012) developed a tool focused on the similarity
of programs, in which they looked at the programming style and used data collected from
professional programmers and first-year students. The system performed better than other
systems in detecting whether code was copied from the internet or received from somebody
outside the course (Arabyarmohamady et al., 2012). Ganguly, Jones, Ramirez-de-la-Cruz,
Ramirez-de-la-Rosa and Villatoro-Tello (2018) also analysed the coding style and took it into
account. They used a set of features where they distinguished lexical, structural and stylistic
features. Stylistic features were, for example, the number of lines of code, the number of
white spaces, the number of tabulations, the number of empty lines, the number of defined
functions, average word length, the number of uppercase letters, the number of lowercase

624

 Heidi Meier, Marina Lepp

letters, the number of underscores (Ganguly et al., 2018). However, there are fewer studies
that use information about the programming process. Some of them use the recording of
keystrokes. Byun, Park and Oh (2020) analysed the keystroke data collected from the
students in an introductory programming course. They showed that using common n-graphs
(n consecutive characters while typing) is an effective way to detect plagiarism. They
developed a system that observed all pressing and releasing actions in the author’s activity at
the millisecond level, and they used press-flight time, release-flight time, dwell time, and
break time while analysing keystroke dynamics for detecting plagiarism.

Longi et al. (2015) distinguish students based on the average time it takes to type digraphs in
programming. They analysed data from an introductory course of programming, which lasted
for seven weeks, and they used data from all study weeks. Their results indicated that there
was potential in using digraphs for identifying students. They compared the average time it
takes for a student to type any character, to type a specific character, and to type a specific
digraph. The average time of typing specific digraphs was the most accurate indicator for
identifying students (Longi et al., 2015). Leinonen, Longi, Klami, and Vihavainen (2016)
developed a methodology to automatically distinguish novice programmers from those who
are experienced. Their results showed that students’ programming experience can be
identified using keystroke data (Leinonen et al., 2016). Some digraphs are common in
programming and rarely occur in natural languages (Leinonen, 2019). More experienced
programmers type these digital graphs faster than average. For example, such a digraph is
“i+” in Java (Leinonen, 2019). There is also an analysis of plagiarism behaviour in
introductory programming courses with take-home exams, and special software was used to
record the programming process (Hellas, Leinonen, & Ihantola, 2017). Afterwards, the
researchers interviewed the students suspected of plagiarism and developed a typology of
plagiarism on the basis of these interviews. They also found patterns that can be helpful in
identifying students who have plagiarised, for example, a linear solution process and pasting
parts of the solution. It is also possible to detect collaboration through alignment of the
programming process but it does not detect students who received help from someone outside
the course (Hellas et al., 2017).

Schneider, Bernstein, vom Brocke, Damevski, and Shepherd (2018) developed a mechanism
which compares program creation processes. They used logs containing sequences of events
that were collected automatically during the programming process. Detection is based on
comparing the histograms of command use in the logs. In plagiarised works, the log is too
different from “honestly created” logs or too similar to another log (Schneider et al., 2018).
Blikstein (2011) developed a technique based on hundreds of snapshots to analyse and
categorise students by programming experience. He used logs that contained all users’
actions, for example, keystrokes and changes in the code. He studied what strategies students
use to solve a programming task, for example, using an existing program as a starting point,

625

Style features in the programming process which can help indicate plagiarism

taking breaks in coding while browsing other sample programs or thinking of solutions, linear
growth in the code size, trial-and-error strategy, sudden increase in code size due to pasted
code (Blikstein, 2011).

3. Methodology

Data were collected from the courses “Introduction to Programming” and “Introduction to
Programming II” which took place at the University of Tartu in the spring of 2020. These
were elective courses for students who were not studying computer science as a major. The
course “Introduction to Programming” lasted for seven weeks, the main topics included:
variables, conditional statement, loop, list, reading from a fail, writing to a fail, function,
simple user interface. Those students who completed the course "Introduction to
Programming" could, if desired, continue with the course "Introduction to Programming II".
The course “Introduction to Programming II” lasted for six weeks and covered the following
topics: nested loops, dictionaries, tuples, sets, graphics and recursion. Both courses were
organised in Python. At the beginning of the course “Introduction to Programming”, there
were both lectures and practical sessions in the classroom. Then, however, an emergency
began due to the pandemic, and the course was completely transformed into an e-learning
format. “Introduction to Programming II” was entirely in the e-learning form. The final
assignments also took place outside the classroom.

The first course had 140 participants, 118 of whom completed it. 39 students continued with
"Introduction to Programming II" and 22 of them completed it. In addition to homework,
students had to submit a Thonny log file each time. They also had to add a Thonny log file
when they submitted the solution to the final assignment. Students who met the following
conditions were included in the study: 1) Studied in both courses; 2) Submitted final
assignment programs and logs for both courses; 3) Submitted homework logs for both
courses for at least 50% of the weeks. There were 17 such students.

All logs submitted during the two courses by the 17 students were analysed using Thonny’s
functionality of replaying the programming process. In addition, the submitted programs
were reviewed. Before the analysis, a table was compiled for each week with characteristics
that could differentiate students. Information about each student was added to the table during
the log analysis. If potential new style features were noticed during the analysis, these were
added to the tables. When all logs were analysed, the information collected from each
student's logs for different weeks was compared. Also, the materials used by the students in
the study process were analysed. In particular, the extent to which the students' style features
overlapped with those in the study materials was compared. The style features in students'
homework were compared with those from the corresponding chapter of the study material.

626

 Heidi Meier, Marina Lepp

4. Results

The style features that were focused on in the study can be divided into two types: 1) non-
programming style features; 2) programming style features. Non-programming style features
include the order of writing brackets, quotation marks, apostrophes, and square brackets. For
example, they can start by writing an opening bracket, then text and finally the closing
bracket (in Table 1 (x) "x" [x]) or an opening bracket, the closing bracket, and finally the text
inside (in Table 1 () "" []). Based on the main writing order of brackets, quotation marks,
apostrophes, and square brackets, the students were divided into seven types (Table 1).

Table 1. Writing parentheses, quotation marks, apostrophes, and square brackets.

Type number Type Number of Students

1 (x) "x" [x] 8

2 () "" [] 4

3 (x) "x" [] 1

4 () "x" [] 1

5 (x) 'x' [] 1

6 Mixed: (x) "x" [x] and () "" [] 1

7 Mixed: (x) 'x' [x] and () '' [] 1

Students' style of writing brackets, etc., was the same from week to week and did not change
significantly during either course. The order of writing is intuitive, and they probably do not
think much about it. It was also examined whether students use quotation marks or
apostrophes while programming. 15 out of 17 used mainly quotation marks. There were also
quotation marks in the study materials. Generally speaking, the basic style of writing
quotation marks or apostrophes was the same from week to week. Some students used
apostrophes in specific contexts, even when their main style was to use quotation marks. One
student, who usually used apostrophes, began writing in quotation marks while writing the
final assignment and later corrected them into apostrophes. It could be an indication of
plagiarism.

Also, it was examined whether or not the students used spaces in expressions. 1 out of 17
wrote without spaces, 2 used a mixed style, and 14 wrote mainly with spaces. However, while
the use of spaces is not persistent, the student who systematically did not use spaces continued
to write without spaces during the two courses. One student sometimes added a space
between the function name and the following opening bracket. She did it somewhere every
week, including in the final assignment of both courses. Also, it was noticed that study
materials influence the use of spaces. Generally, spaces are used in study materials. There

627

Style features in the programming process which can help indicate plagiarism

are some examples in some chapters, where there are no spaces somewhere, and the same
use of spaces was found in students’ solutions.

In the following, the features that are more related to programming are analysed. For
example, the writing of a print statement was considered. Most students used concatenation
of strings in the print statement; only some of them used commas. In the course “Introduction
to Programming”, the results were as follows (including only the weeks with tasks using print
statements): week 3 – student 2, 4, 6, 8; week 4 – student 4, 8; week 5 – student 4, 6, 8; week
6 – student 2, 4, 6; final assignment – student 4, 6, 8, 12. In the course “Introduction to
Programming II”, only some used commas: week 1 – student 4, 8, 12, 17; final assignment –
student 4, 6, 8. Most students who used the alternative variant did so several times, but not
every time. In the study materials, there is a print statement with concatenation of strings.
One student previously preferred joining the strings, but used commas in the final
assignment. When the logs were analysed, it was clear that he had a solution of a sample task
with commas open during the programming. Based on this example, we can see that sample
solutions also affect the style.

The use of variable names was also considered. Most students wrote multi-word variable
names with a lowercase letter or used an underscore. The following students used capital
letters in the middle of variable names: week 3 – student 5; week 4 – student 5; week 5 –
student 5, 6, 9, week 6 – student 1, 3, 6, 9 (the 5th student did not upload logs and programs);
final assignment – student 5, 9. In the course “Introduction to Programming II”, only some
used capital letters in the middle of variable names: week 2 – student 5; week 3 – student 8;
final assignment – student 9. In the other weeks, no one used the alternative variant. Students
varied the variants and using variable names was not persistent. Variable names are separated
by underscores in the materials or several words are written together. In the materials of week
6, it is different: there, capital letters are used in the middle of a word in variable names.
Students used the second style the most in week 6.

Next, the use of i += 1 vs i = i + 1 was studied. Students used both options. It was often the
case that they tried one of these at first and then the other one. More use of i += 1 was
observed towards the end of the course and during the second course (Table 2). The topic for
the third week was a loop, and they used it then for the first time. The variant i = i + 1 is used
at the beginning of the 3rd-week materials and then i += 1 is used in the following
subsections. The 4th-week materials have i += 1, and the 5th-week and 6th-week materials
also have i += 1. Comparing the student's choices with the materials, it can be said that the
materials significantly influenced what choices students made in their programs.

The writing of the module import was also analysed. Most of the students used the variant
shown in the examples in materials. For example, most students used the 'from random import
*' style to import the 'random' module, not ‘import random’. In week 3, students 6, 11, 17

628

 Heidi Meier, Marina Lepp

used the alternative variant; nobody did it in week 6. In the second course, only the 2nd
student used the alternative variant. Importing modules was only included in a few tasks.
Therefore, no conclusions can be drawn about the permanence of module import writing.

Table 2. Use of i = i + 1 and i += 1.

Introduction to Programming Introduction to Programming II
Week Style feature Number of

students
Week Style feature Number of

students
Week 3 only i = i + 1 1 Week 1 only i = i + 1 0

only i += 1 9

only i += 1 14
both 7

both 3

Week 4 only i = i + 1 3 Week 2 only i = i + 1 2

only i += 1 13

only i += 1 11
both 1

both 1

Week 6 only i = i + 1 1

missing 3
only i += 1 16 Final assignment only i = i + 1 2

both 0

only i += 1 15

Final assignment only i = i + 1 1

both 0
only i += 1 15

both 1

To open the file, students mostly used the form 'file = open("data.txt", encoding = "UTF-8")'.
The alternative option 'with open("data.txt") as file' was not used by anyone in week 4; in
week 6 it was used by one student in one task. The same student used it throughout the second
course, as well as in the final assignment. The form 'file = open("data.txt", encoding = "UTF-
8")' is used in the study materials. The file opening form was also analysed in more detail (if
the students added encoding or not or added, for example, ‘r’). It can be said that it varied
from week to week, and the students did not do it the same way every time.

5. Conclusion

Based on the results, it can be said that non-programming style features are more permanent.
They can be used to automatically check if a student has solved a task on their own. However,
since some students belong to the same type, it is necessary to use various style features and
combine them with, for example, the average time of typing digraphs, etc. The non-
programming style features can also be combined with methods that check the similarity of
the programs. However, the programming style features vary and change during the course.
The students participating in introductory courses do not use programming style features in
a persistent manner; it is significantly influenced by how these features are used in study
materials. Final assignment solutions are also influenced by the solutions of sample exercises

629

Style features in the programming process which can help indicate plagiarism

that the students use while writing the program. Programming style features cannot be used
to automatically check if a student has solved a task on their own.

It is important to further explore the style features with quantitative methods that help
differentiate the students' programs and develop tools to help control possible plagiarism
cases as, because of the current situation, there are more and more cases where students solve
final assignment tasks at home and teachers cannot see who exactly solved the task. Finally,
it should be noted that the main limitations of this study are the small sample and the length
of the courses. It is possible that the results are not quite the same if the target group of the
course is different or if it is not an introductory course.

References

Annamaa, A. (2015). Thonny: A Python IDE for Learning Programming. Proceedings of the
2015 ACM Conference on Innovation and Technology in Computer Science Education,
343. doi: 10.1145/2729094.2754849.

Arabyarmohamady, S., Moradi, H., & Asadpour, M. (2012). A Coding Style-based
Plagiarism Detection. 2012 International Conference on Interactive Mobile and
Computer Aided Learning (imcl) (pp. 180–186). New York: IEEE.

Blikstein, P. (2011). Using learning analytics to assess students’ behavior in open-ended
programming tasks. Proceedings of the 1st International Conference on Learning
Analytics and Knowledge, 110–116. doi: 10.1145/2090116.2090132.

Byun, J., Park, J., & Oh, A. (2020). Detecting Contract Cheaters in Online Programming
Classes with Keystroke Dynamics. Proceedings of the Seventh ACM Conference on
Learning @ Scale, 273–276. doi: 10.1145/3386527.3406726.

Ganguly, D., Jones, G. J. F., Ramirez-de-la-Cruz, A., Ramirez-de-la-Rosa, G., & Villatoro-
Tello, E. (2018). Retrieving and classifying instances of source code plagiarism.
Information Retrieval Journal, 21(1), 1–23. doi: 10.1007/s10791-017-9313-y.

Hellas, A., Leinonen, J., & Ihantola, P. (2017). Plagiarism in Take-home Exams: Help-
seeking, Collaboration, and Systematic Cheating. Proceedings of the 2017 ACM
Conference on Innovation and Technology in Computer Science Education, 238–243.
doi: 10.1145/3059009.3059065.

Leinonen, J. (2019). Keystroke Data in Programming Courses. Helsingin yliopisto.
Leinonen, J., Longi, K., Klami, A., & Vihavainen, A. (2016). Automatic Inference of

Programming Performance and Experience from Typing Patterns. Proceedings of the
47th ACM Technical Symposium on Computing Science Education, 132–137. doi:
10.1145/2839509.2844612.

Longi, K., Leinonen, J., Nygren, H., Salmi, J., Klami, A., & Vihavainen, A. (2015).
Identification of programmers from typing patterns. Proceedings of the 15th Koli Calling
Conference on Computing Education Research, 60–67. doi: 10.1145/2828959.2828960.

Schneider, J., Bernstein, A., vom Brocke, J., Damevski, K., & Shepherd, D. C. (2018).
Detecting Plagiarism Based on the Creation Process. IEEE Transactions on Learning
Technologies, 11(3), 348–361. doi: 10.1109/TLT.2017.2720171.

630

